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bstract

In this paper, a new state of charge estimation method for lithium battery has been presented. Contrary to the conventional methods which
se complicated battery modeling, a simple resistor–capacitor battery model was used in order to reduce calculation time and system resource.
odeling errors caused by the simple model are compensated by the sliding mode observer. The structure of the proposed system is simple, but it

hows robust control property against modeling errors and uncertainties. The state equation for battery model and the systematic design approach

or sliding mode observer also have been presented. The convergence of proposed observer has been proved by the Lyapunov inequality equation
nd the performance of system has been verified by the sequence of urban dynamometer driving schedule test. The test results show the proposed
bserver system has robust tracking performance with reduced calculation time under the real driving environments.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Lithium-ion or lithium-polymer batteries are widely used in
he mobile equipment, electric vehicle, space and aircraft power
ystems for their high energy density, high galvanic potential and
ong lifetimes compared to the lead-acid battery or nickel-metal
ydride batteries. Due to the complex chemical and physical
rocess of the battery, the behavior of battery is hard to pre-
ict compared with that of electric and mechanic devices. There
re several parameters associated with battery behavior. The
ey parameter will be the state of charge (SOC) of the bat-
ery. The SOC corresponds to the stored charge available to do
ork relative to that which is available after the battery has been

ully charged. SOC can be viewed as a thermodynamic quantity,
nabling one to assess the potential energy of the system. Since
he battery charge/discharge current control is based on the SOC

nformation, the correct indication of SOC are of considerable
mportance such as hybrid electric vehicle (HEV) application.
ince there is no sensor available to measure SOC, it should be
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stimated from physical measurements by some mathematical
lgorithm.

There have been many attempts to estimate the SOC of bat-
eries. The most common methods are the charge counting and
alman filter approach. Charge counting or current integra-

ion is the most commonly used technique, requiring dynamic
easurement of the battery charge–discharge current, the time

ntegral of which is considered to provide a direct indication of
OC [1]. However, the charge counting is an open loop SOC
stimator and thus the errors in the current detector are accu-
ulated by the estimator. The error is due to noise, resolution,

nd rounding are cumulative and large SOC errors can result.
reset or recalibration action is, therefore, required at regu-

ar intervals—in all electric vehicles. This may be carried out
uring a full charge or conditioning discharge, but is less appro-
riate for standard HEV operation where full SOC is rarely
chieved.

Cell-impedance measurements have also been reported as a
seful technique for resetting or adjusting SOC estimates from

ntegration based methods. However, from results of various
tudies undertaken to identify the impedance variation of battery,
ith SOC, contradictory views to their usefulness in practical

ystems currently remain unresolved [2].

mailto:iskim@powerlab.kaist.ac.kr
dx.doi.org/10.1016/j.jpowsour.2006.09.006
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Nomenclature

A, B, Γ , ξ system parameters
Cn nominal capacity of the cell (Ah)
Cp polarization capacitance (F)
e error states
�f1, �f2, �f3 modeling errors and uncertainties
H gain matrix
P, Q, Pf, Qf, R positive definite gain matrix
Rp diffusion resistor (�)
Rt ohmic resistance (�)
Voc(Z) open-circuit voltage as a function of SOC Z
Vp polarization voltage (V)
V̂p estimate of the polarization voltage (V)
Vt cell terminal voltage (V)
V̂t estimate of the cell terminal voltage (V)
x system states
y output state
Z state of charge
Ẑ estimate of the state of charge

Greek letter
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The Kalman filter methods are well known technology for
ynamic system state estimation such as target tracking, nav-
gation and battery field [3,4]. It provides a recursive solu-
ion to optimal linear filtering, for both state observation and
rediction problems. The unique advantage of the Kalman
lter is that it optimally estimates states affected by broad-
and noise contained within the system bandwidth. The draw-
acks of Kalman filter are difficulties of feedback gain selec-
ion. If the gain is not properly selected, the estimated states
ill diverge. Also Kalman filter have some limitations for
real implementation such as perfect modeling of the plant

nd Gaussian distribution of the external noise. If these con-
traints are not satisfied, the performance of the Kalman fil-
er will be degraded and thus cannot be used in the real
pplications.

Other reported methods for estimating the SOC have been
ased on artificial neural networks and fuzzy logic principles
5,6]. Since these techniques incur large computation overhead
n the battery management controller, it can be a problem
or online implementation. If high performance digital sig-
al processing (DSP) chips are used as controller, neural net-
orks, in particular, can reduce the calculation loads for large
umber of empirically derived parameters required by other
ethods.
In this paper, the new sliding mode observer design method

as been proposed for the battery SOC estimation. The pro-
osed sliding mode observer can overcome the above mentioned

rawbacks by using sliding mode techniques. Sliding mode con-
rol was first introduced by Utkin [7]. It is a technique robust
n the presence of parameter uncertainties and disturbances. It
ntails the construction of an equilibrium manifold and a con-

s

V
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rol, designed to drive the system state to the sliding manifold
nd maintain it on the equilibrium manifold. The equilibrium
anifold is constructed so that the system restricted to the man-

fold has a desired behavior. As the sliding mode controller has
een known to have the robustness under the presence of param-
ter variations and disturbance, the sliding mode observers are
lso known to have similar robustness properties [8–10]. The
ain characteristic of the sliding mode observer is that it has

obust tracking performance under modeling uncertainties envi-
onments and simple control structure.

. Battery modeling

There have been many attempts to develop battery modeling.
he most common methods are electro-chemistry model and
lectro-circuit model. While detailed chemistry-based models
ave been built to investigate the internal dynamics of the bat-
ery, these models are generally not suitable for electrical system
esign approach [11]. On the other hand, circuit-based models
ave been built by the electric circuit parameters such as capac-
tor, resistor, voltage source and so on [12]. It is commonly used

ethod for battery controller, because it is possible to express as
athematical formulas. It has been known that perfect battery
odeling is hard to achieve for every operating conditions using

he electro-circuit model. Therefore, many complicated electri-
al modeling methods have been developed to reduce modeling
rrors. However, these methods increase the calculation time,
ystem complexity, resources and they can be a cause of insta-
ility.

A simple resistor–capacitor model is employed to the lithium
attery modeling in this paper. All of the modeling errors, uncer-
ainties, and time varying elements are considered as external
isturbance at all. The merit of this model is simple, little com-
utational time, and the modeling errors are compensated in the
obust sliding mode observer.

A resistor–capacitor electrical model of lithium-polymer bat-
ery consists of non-linear voltage source Voc(Z) as a func-
ion of SOC Z, a capacitance Cp to model chemical diffusion
f the electrolyte within the battery, a diffusion resistance Rp
s a function of current I, an ohmic resistance Rt and termi-
al voltage Vt. The resistor–capacitor electrical model includ-
ng uncertainties is shown in Fig. 1. The terminal voltage is
iven as

t = Voc(Z) + IRt + Vp (1)

The time derivative for SOC Z can be expressed as follows:

˙ = I

Cn
= 1

RtCn
(Vt − Voc(Z) − Vp) (2)

here I is the instantaneous current and Cn is the nominal capac-
ty of the cell. The polarization voltage due to the current is

hown as

˙p = − 1

RpCp
Vp + I

Cp
(3)
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Fig. 1. The resistor–capacitor electrical modeling of lithium battery.

The time derivative of Vt is obtained by assuming dI/dt = 0,
nd the complete state equation is given as

˙
t = Voc(Ż) + V̇p = I

Cn
− 1

RpCp
Vp + I

Cp

= − 1

RpCp
Vt + 1

RpCp
Voc(Z) +

(
1

Cn
+ 1

Cp
+ Rt

RpCp

)
I

= −a1Vt + a1Voc(Z) + b1I,

˙ = a2Vt − a2Voc(Z) − a2Vp, V̇p = −a1Vp + b2I,

= [ 1 0 0 ][ Vt Z Vp ]T (4)

here a1 = 1/(RpCp), a2 = 1/(RtCn), b1 = (1/Cn) + (1/Cp)
(Rt/RpCp), b2 = 1/Cp.
This battery model is not linear if Voc is not linearly pro-

ortional to the SOC Z. Actually Voc is rather piecewise linear
ith respect to Z. The relationship is developed from the cell

xperimental data, where open circuit voltage (OCV) tests are
erformed on successive discharge of the battery, by the appli-
ation of periodic current discharge. As for the temperature
ariation from +55 to −30 ◦C, the OCV of a lithium-polymer
attery (LI-PB) varies non-linearly over the battery SOC as can
e seen in Fig. 2.

In order to develop piecewise linear model, define
oc(Z) = κZ + d for some range of Z and thus κ is not a constant
ut varies depending on the Z. di is defined as Voc linearization
rror caused by the piecewise linearization

˙
t = −a1Vt + a1κZ + b1I + d1 = −a1Vt + a11Z+b1I + d1,

˙ = a2Vt − a2κZ − a2Vp + d2 = a2Vt − a22Z − a2Vp + d2,
˙p = −a1Vp + b2I + d3 (5)

This model is not accurate compared with the real cell data.
herefore, the unknown non-linear disturbances terms are added

o the model to compensate for the modeling errors

y

w
r
a
a

Fig. 2. Open circuit voltage vs. SOC of the lithium-polymer battery.

˙
t = −a1Vt + a11Z + b1I + �f1,

˙ = a2Vt − a22Z − a2Vp + �f2,

˙p = −a1Vp + b2I + �f3 (6)

here �f1, �f2, �f3 not only represent non-linearities caused by
inearization error di and modeling error, but also time-varying
erms and internal/external disturbances. It can be decomposed
s

f1 = Γ1ξ, �f2 = Γ2ξ, �f3 = Γ3ξ (7)

here Γ 1, Γ 2, Γ 3 are known values and ξ represents unknown
uantity whose bound is limited.

Observability of the linear system can be obtained from con-
truction of the observability of matrix OM

M = [ C CA CA2 ]
T

(8)

here C = [ 1 0 0 ] and A is the system parameter matrix
iven in Eq. (6). When expanded, OM is

M =

⎡
⎢⎣

1 0 0

−a1 a11 0

a2
1 + a11a2 a2a11 + a2

22 a2a22 + a1a2

⎤
⎥⎦

T

(9)

Under every operating condition, the observability matrix is
lways full rank. Therefore, the suggested modeling is observ-
ble and thus possible to estimate the internal state of the battery.

. Sliding mode observer design

Consider the following time invariant linear system [13]:

˙ = Ax + Bu + Γξ(x, u) (10)

= Cx (11)
here x ∈ Rn×1 is the state vector, A ∈ Rn×n, B ∈ Rn×m is full
ank, u ∈ Rm×1 is the control input, C ∈ Rn×m such that CB is

non-singular matrix, and y ∈ Rm×1 is the output, Γ ∈ Rm×1

nd ξ ∈ Rm×1 is the bounded disturbance input, i.e., such that
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ξ‖ < h. The controllability matrix (A, B) is completely control-
able and (A, C) is completely observable. It is also assumed that
he input–output system is minimum phase.

A sliding mode observer for the system Eq. (10) is

˙̂ = Ax̂ + Bu + H(y − ŷ) + ρΓ sgn(y − ŷ) (12)

ˆ = Cx̂ (13)

here the gain matrix H and the switching gain ρ are chosen
o that the stability of the observer system is preserved. The
iscontinuous feedback input is defined as

gn(ey) =
{

+1, ey > 0

−1, ey < 0
(14)

The state reconstruction error is defined as e = x − x̂. Sub-
racting Eq. (10) from Eq. (12) gives the dynamical reconstruc-
ion error system as

˙ = Ae − HCe + Γξ(x, u) − ρΓ sgn(Ce)

= (A − HC)e + Γξ(x, u) − ρΓ sgn(Ce) (15)

y = y − ŷ = Ce (16)

The feedforward gain matrix H can be obtained in two ways;
ole assignment method and LQ method. The LQ method is
asier to obtain gain matrix H using the Riccati equation as

P + PAT − PCTR−1CP = −Q (17)

here Q, R are arbitrary semi-positive definite and positive def-
nite matrices, respectively, has a positive definite solution P.
hen AT − CTHT is stable with

T = R−1CP (18)

hich is equivalent to the stability of A − HC. In fact H is the
bserver gain matrix for the system Eq. (10).

By using appropriate Lyapunov equation we select a matrix
such that the reconstruction error system is asymptotically

table.
Let Pf be the positive definite solution of the Lyapunov equa-

ion

A − HC)Pf + Pf(A − HC)T = −Qf (19)

here Qf is an arbitrary positive definite matrix. Set

TPf = WC (20)

Then the asymptotically stability of the reconstruction error
ystem is guaranteed if W is a positive definite matrix.

A Lyapunov function candidate for Eq. (15) is

(e) = eTPfe (21)

Then
˙ (e) = ėTPfe + eTPfė = eT((A − HC)Pf + Pf(A − HC)T)e

+ (Γ Tξ − ρΓ T sgn(ce))Pfe

+ eTPf(Γ
Tξ − ρΓ T sgn(ce))

w

t
c

rces 163 (2006) 584–590 587

= −eTQfe + 2(Γ TPfeξ − ρΓ TPf esgn(ey))

= −eTQfe + 2(WCeξ − ρWCe sgn(ey))

= −eTQfe + 2W(eyξ − ρey sgn(ey))

= −eTQfe + 2Wey(ξ − ρ sgn(ey)) (22)

The −eTQfe is always negative and the latter part of the equa-
ion is

y(ξ − ρ sgn(ey)) < 0 for ey > 0, if ρ > h;

y(ξ − ρ sgn(ey)) < 0 for ey < 0, if ρ > h (23)

here h is a boundary value for ξ.
Then the resultant equation will be

˙ (e) < 0 (24)

Therefore

lim→∞e(t) = 0 (25)

. Cell parameter extraction

The large size Li-PB was used for the test. The cell com-
rises of a LiMn2O4 cathode, an artificial graphite anode and
s designed for high power application. It has a nominal capac-
ty of 5.0 Ah and a nominal voltage of 3.8 V. The dimension
f the cell is 250 mm × 125 mm × 5 mm and weight of the
ell is 120 g. The thermal chamber and the Nittetsu cycler
ere used as charge–discharge equipments for temperature

egulations. Nittetsu cycler has 0–5 V voltage measurement
ange and 0–120 A current measurement. The cycler’s volt-
ge measurement accuracy is ±5 mV and its current measure-
ent accuracy is ±200 mA. It also has precision ampere-hour

ounter for direct SOC calculation. True SOC was directly
btained from this ampere-hour counter. The test was performed
ith fully charged condition to set the SOC to one. As test
roceeds, the true SOC was calculated by the ampere-hour
ounter.

Cell characterization tests were performed to extract cell
arameters. The parameters are based on the nominal data which
s obtained from 25 ◦C temperature test result. The modeling
rrors and uncertainties values are obtained from the boundaries
f the operating temperature which ranges from −30 to 55 ◦C.
his method can be applied to other kinds of batteries by chang-

ng the nominal parameters.
This set of test comprised a sequence of constant current

ischarges for 180 s and rests for 3600 s. The cell started fully
harged up to 4.2 V before the test begins. The discharge current
s 5 A and it corresponds to the 1-C rate of the nominal capac-
ty. This amounts to 5% decrease of SOC for each period. The
ampled data is collected every second. The purpose of this test
s to set the OCV over the entire SOC range and the test result

as shown in Fig. 2.
The result comparing the electrical modeling with the cell’s

est data is shown in Fig. 3. It shows the discharge current, true
ell voltage, modeling cell voltage and the modeling voltage
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Fig. 3. Current, voltages for true and model cell, and error.
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Fig. 4. The polarization resistance Rp.

rror. The shapes of the true cell response and the model out-
ut are similar in general, although many details of the true cell
esponse are different. This is mainly due to the non-linear char-
cteristics of the nominal capacitance Cn of the true cell and also
o the fact that the values of resistances are changed by the SOC.
he model parameters are calculated to match with the test data
nd the resultant values are Cn = 5 Ah, Cp = 200 F, Rt = 0.001 �,
b = 0.003 �, and Rp is a non-linear resistance which varies on

he current. The plot of Rp over current is shown in Fig. 4.
. Experimental result for SOC estimation

This data was used to identify nominal parameters
or state modeling of the battery. The model parameter

t
d
d
R

rces 163 (2006) 584–590

re given a1 = 1.667, a2 = 0.0589, a11 = 2.8339, a22 = 0.1001,
1 = 0.00672, b2 = 0.005. The uncertainties terms are determined
y comparing true cell data with model data to minimize the
rrors. The system parameters are

=

⎡
⎢⎣

−1.667 2.8339 0

0.0589 −0.1001 −0.0589

0 0 −1.667

⎤
⎥⎦ ,

=

⎡
⎢⎣

0.00672

0

0.005

⎤
⎥⎦ , �f =

⎡
⎢⎣

0.2

0.2

1

⎤
⎥⎦ ξ

Assume ξ is a bounded random signal satisfying ‖ξ‖ < 0.1.
hoosing R = 1, Q = I3, then the positive definite solution of Ric-
ati equation Eq. (17) is

=

⎡
⎢⎣

1.3629 0.9530 −0.0046

0.9530 1.0241 −0.0077

−0.0046 −0.0077 0.2999

⎤
⎥⎦

From Eq. (18) H is

=

⎡
⎢⎣

1.3629

0.9530

−0.0046

⎤
⎥⎦

Note that the eigenvalues of A − HC are −1.5640 ± 0.6223i,
1.6689. Let Qf = 5I3. The positive definite matrix of the Lya-

unov equation Eq. (19) is

f =

⎡
⎢⎣

3.0645 2.3942 −0.0179

2.3942 3.6108 −0.0347

−0.0179 −0.0347 1.4997

⎤
⎥⎦

Let W = 1 and choosing ρ = 0.2 as switching gain, then
he resultant observer system error reduces to zero by
q. (24).

The configuration of observer system is shown in Fig. 5. The
ell model parameters are obtained by off-line cell test results
nd the sliding mode observer equations are established by on-
ine for charge/discharge current of the LI-PB as can be seen in
ig. 5. The charge/discharge current is applied to the LI-PB and
liding mode observer simultaneously. The terminal voltage of
he LI-PB is measured as output and fed into the sliding mode
bserver to compensate for the errors, and output of the observer
s the estimated SOC. The controller has been built with infineon
6-bit microprocessor XC167-40 MHz. The calculation time for
ne cell including current and voltage measurement is around
0 ms. Conventional methods for Kalman filters may take 50 ms
or example.

The results of SOC estimation using sliding mode observer
re shown in Fig. 6. The estimated model output is controlled
ith respect to cell terminal voltage with switching ripple, and
he estimated SOC follow the true SOC although it has some
eviation at the start/end of rest period. This is caused by the
iscontinuous current and is affected by the abrupt change of
p. In the discontinuous period, the sliding trajectory is away



I.-S. Kim / Journal of Power Sources 163 (2006) 584–590 589

he proposed observer system.

f
t
T
o
e
T
S
c
a

Fig. 5. Configuration of t

rom the sliding surface by the discontinuous function, but
he trajectory tracks into the sliding surface in a short time.
he one cycle of Fig. 6 is shown in Fig. 7. The estimated
utput voltage tracks cell voltage with chattering ripples. The
stimated SOC also tracks true SOC with chattering ripples.

he average value of the estimated SOC is close to the true
OC. This result shows the proposed sliding mode observer
an track SOC accurately although the cell modeling is not
ccurate.

Fig. 6. The results of proposed sliding mode observer.

Fig. 7. One cycle plot of Fig. 6.

Fig. 8. The results of whole UDDS test.
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To verify the performance of the proposed observer at the real
riving situation, the second test was performed as a sequence
f 20 urban dynamometer driving schedule (UDDS) cycles. It is
perated by series of charge–discharge pulses and 5 min rests,
nd spread over the 100–0% SOC range. It can be seen that the
OC decreases by about 5% during each UDDS cycle. Fig. 8
hows the result of overall UDDS cycle current, true cell and
odel cell voltage, their voltage error. The modeling error is less

han 20 mV for 20–80% of SOC range. For clear view, the one
ycle of UDDS is shown in Fig. 9. The proposed sliding mode
bserver was applied to the overall UDDS cycle. The resultant
OC for whole UDDS cycle has been shown in Fig. 10. The esti-
ated SOC and error for whole UDDS cycles are shown in the
gure. The SOC error is bounded to 3% of all the cases. The tra-

ectory of the estimated SOC and error for the one UDDS cycle
re shown in Fig. 11 in order to show clear view of the sliding

ode observer behavior. The trajectories are always confined

o the true SOC with the chattering value. This chattering can
e smoothed by saturation function instead of sign function. In
ther way, the average value of the estimated SOC can be close

Fig. 10. Estimated SOC and error for UDDS cycles.
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[

Fig. 11. One cycle result of the estimated SOC and error.

he true SOC. In this way, the suggested sliding mode observer
an be directly applied to the HEV environment with superior
erformance.

. Conclusions

The sliding mode observer design method for LI-PB state
f charge estimation has been presented in this paper. The sim-
le R–C model was used for Li-PB modeling and the modeling
rrors or uncertainties caused by the simple model were com-
ensated by the proposed sliding mode observer system. The
ystematic design method has been presented and the Lyapunov
nequality equation has proved convergence of the proposed
bserver. The performance of the proposed system has been
erified by the UDDS cycle test which is very harsh environ-
ental test. The SOC error is confined to the acceptable level,

ess than 3% in most cases which is applicable to the real
nvironments.
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